Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 204: 108079, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447862

RESUMO

Studies on community composition and population structure of entomopathogenic fungi are imperative to link ecosystem functions to conservation biological control. We studied the diversity and abundance of Metarhizium spp. from soil of conventionally and organically farmed strawberry crops and from the adjacent field margins in two different climatic zones: Brazil (tropical) and Denmark (temperate), using the same isolating methods. In Brazilian strawberry soil, Metarhizium robertsii (n = 129 isolates) was the most abundant species, followed by M. humberi (n = 16); M. anisopliae (n = 6); one new taxonomically unassigned lineage Metarhizium sp. indet. 5 (n = 4); M. pingshaense (n = 1) and M. brunneum (n = 1). In Denmark, species composition was very different, with M. brunneum (n = 33) being isolated most commonly, followed by M. flavoviride (n = 6) and M. pemphigi (n = 5), described for the first time in Denmark. In total, 17 haplotypes were determined based on MzFG543igs sequences, four representing Danish isolates and 13 representing Brazilian isolates. No overall difference between the two climatic regimes was detected regarding the abundance of Metarhizium spp. in the soil in strawberry fields and the field margins. However, we found a higher Shannon's diversity index in organically managed soils, confirming a more diverse Metarhizium community than in soils of conventionally managed agroecosystems in both countries. These findings contribute to the knowledge of the indigenous diversity of Metarhizium in agricultural field margins with the potential to contribute to pest regulation in strawberry cropping systems.

2.
Bull Entomol Res ; 113(4): 508-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37278198

RESUMO

The present study evaluated the reproductive compatibility of Trichogramma pretiosum Riley, 1879, through an integrative approach using biological data and morphometry of three isofemale lines (isolines) collected from two geographical areas. These isolines differed in sequences of mitochondrial DNA and reproductive performance in the laboratory. The wasps used to initiate the isolines were collected in different environments: two lines from a Mediterranean climate in Irvine, California, USA, and one line from a tropical climate in Piracicaba, São Paulo, Brazil. Reproductive compatibility was studied by evaluating the sex ratio and number of adult offspring produced of all mating combinations between adults from these isolines. Morphometry was studied by measuring 26 taxonomically useful characters, followed by a multivariate analysis. For the allopatric matings among Brazilian and North American isolines, a low level of crossing incompatibility was recorded, in only one direction of the crosses; whereas the sympatric North American isolines were incompatible in both directions. Multivariate analysis of the morphometric data indicated no distinct groups, suggesting that despite the genetic and biological differences, the isofemale lines are morphologically similar.


Assuntos
Reprodução , Vespas , Animais , Brasil , Vespas/genética , DNA Mitocondrial , Mitocôndrias
3.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956520

RESUMO

Mummy berry, caused by Monilinia vaccinii-corymbosi, is the most important disease of the northern highbush blueberry (Vaccinium corymbosum L.) in North America and can cause up to 70% yield losses in affected fields. A key event in the mummy berry disease cycle is the primary infection phase where ascospores are released by apothecia that infect emerging floral and vegetative tissues. Current management of mummy berry disease in northwestern Washington is predominantly reliant on the prevention of primary infections through prophylactic, calendar-based fungicide spray applications early in the growing season. To improve the understanding of risk during these periods and to help tailor management strategies, we developed a decision support system (DSS) based on field records spanning over five seasons and four locations in northwestern Washington. Environmental conditions across the region were highly uniform but different dynamics of apothecial development were observed under high- and low-management regimes. Based on our analysis, we suggest basing the initial iteration of the DSS on two sub-models. The first sub-model predicts the onset of apothecia based on chill-unit accumulation under high- and low-management regimes, and the second predicts primary infection risk, which provides opportunities to improve the timing of fungicide applications. The synoptic DSS proposed here is based on the current biological knowledge of the pathosystem and available data for the northwestern Washington region. We provide the analysis and the DSS implementation and evaluation as an open-source repository, providing opportunities for further improvements. Finally, we provide suggestions for future research and the operational efforts needed for improving the utility and accuracy of the mummy berry DSS.

4.
J Fungi (Basel) ; 8(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628766

RESUMO

Pochoniachlamydosporia and Purpureocilliumlilacinum are fungal bioagents used for the sustainable management of plant parasitic nematodes. However, their production through submerged liquid fermentation and their use in seed treatment have been underexplored. Therefore, our goal was to assess the effect of different liquid media on the growth of 40 isolates of P. lilacinum and two of P. chlamydosporia. The most promising isolates tested were assessed for plant growth promotion and the control of the two-spotted spider mite (Tetranychus urticae) and the soybean cyst nematode (Heterodera glycines). Most isolates produced > 108 blastospores mL−1 and some isolates produced more than 104 microsclerotia mL−1. Microsclerotia of selected isolates were used to inoculate common bean (Phaseolus vulgaris L.) seeds in greenhouse trials. All fungal isolates reduced the T. urticae fecundity in inoculated plants through seed treatment, while P. chlamydosporia ESALQ5406 and P. lilacinum ESALQ2593 decreased cyst nematode population. Purpureocillium lilacinum was more frequently detected in soil, whereas P. chlamydosporia colonized all plant parts. Pochonia chlamydosporia ESALQ5406 improved the root development of bean plants. These findings demonstrate the possibility of producing submerged propagules of P. chlamydosporia and P. lilacinum by liquid culture, and greenhouse trials support the applicability of fungal microsclerotia in seed treatment to control P. vulgaris pests.

5.
Sci Rep ; 11(1): 7555, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824378

RESUMO

The continuously growing number of COVID-19 cases pressures healthcare services worldwide. Accurate short-term forecasting is thus vital to support country-level policy making. The strategies adopted by countries to combat the pandemic vary, generating different uncertainty levels about the actual number of cases. Accounting for the hierarchical structure of the data and accommodating extra-variability is therefore fundamental. We introduce a new modelling framework to describe the pandemic's course with great accuracy and provide short-term daily forecasts for every country in the world. We show that our model generates highly accurate forecasts up to seven days ahead and use estimated model components to cluster countries based on recent events. We introduce statistical novelty in terms of modelling the autoregressive parameter as a function of time, increasing predictive power and flexibility to adapt to each country. Our model can also be used to forecast the number of deaths, study the effects of covariates (such as lockdown policies), and generate forecasts for smaller regions within countries. Consequently, it has substantial implications for global planning and decision making. We present forecasts and make all results freely available to any country in the world through an online Shiny dashboard.


Assuntos
COVID-19/epidemiologia , Previsões , Saúde Global , Humanos , Modelos Estatísticos , Pandemias , SARS-CoV-2/isolamento & purificação
6.
Sci Rep ; 9(1): 4443, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872601

RESUMO

The use of Metarhizium against sugarcane spittlebugs in Brazil is one of the most successful and long lasting biological control programs using entomopathogenic fungus in the world. However, studies to monitor the fate of this fungus on the sugarcane agroecosystem are rare, especially with respect to its persistence, efficacy in pest control and impact on the local populations of Metarhizium. The present study aimed at documenting the efficacy and persistence of M. anisopliae strain ESALQ1604 in a sugarcane field by using microsatellite molecular markers. The species diversity of Metarhizium was characterized in insects, soil and sugarcane roots in a sprayed and an unsprayed plot. Although the infection rates were not very high (≤ 50%), the applied strain was recovered from spittlebugs after 7, 30 and 60 days' post-application, but accounted for only 50%, 50% and 70.5% of all insects killed by M. anisopliae, respectively. All haplotypes from spittlebug were associated with a single subclade of M. anisopliae. The highest haplotype diversity was found in soil (h = 0.989) and in the smallest in spittlebug (h = 0.779). Metarhizium robertsii, M. anisopliae, M. brunneum; one taxonomically unassigned lineage was found in soil and only M. brunneum and M. anisopliae were isolated from roots. This study revealed the great diversity of Metarhizium spp. in the sugarcane agroecosystem and the importance of the local population of M. anisopliae on spittlebugs management.


Assuntos
Agentes de Controle Biológico , Variação Genética , Insetos/microbiologia , Metarhizium/genética , Microbiologia do Solo , Animais , Brasil , Ecossistema , Haplótipos , Hemípteros/microbiologia , Repetições de Microssatélites , Filogenia , Raízes de Plantas/microbiologia , Recombinação Genética , Saccharum
7.
Insects ; 9(2)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921772

RESUMO

Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and time that enables and promotes primary conidia production and capilliconidia formation in N. floridana (Brazilian isolate ESALQ 1420), in both a detached leaf assay mimicking climatic conditions in the leaf boundary layer and in a semi-field experiment. In the detached leaf assay, a significant number of conidia were produced at 90% RH but the highest total number of primary conidia and proportion of capilliconidia was found at 95 and 100% RH at 25 °C. Positive temperature and RH effects were observed and conidia production was highest in the 8 to 12 h interval. The semi-field experiment showed that for a >90% probability of N. floridana sporulation, a minimum of 6 h with RH >90% and 10 h with temperatures >21 °C, or 6 h with temperatures >21 °C and 15 h with RH >90% was needed. Our study identified suitable conditions for primary- and capilliconidia production in this Brazilian N. floridana isolate. This information provides an important base for building models of a Decision Support System (DSS) where this natural enemy may be used as a tool in Integrated Pest Management (IPM) and a base for developing in vivo production systems of N. floridana.

8.
PLoS One ; 10(7): e0132128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132327

RESUMO

Huanglongbing (HLB) is a disease associated with the bacteria "Candidatus Liberibacter spp." and has been devastating citrus orchards around the world. Its management involves control of the insect vector, the Asian citrus psyllid Diaphorina citri Kuwayama. However, the indiscriminate use of chemicals has caused pest outbreaks and eliminated the natural enemies of the vector, such as the parasitoid Tamarixia radiata (Waterston), the main agent for biological control of D. citri. This study assessed the lethal and sublethal effects of insecticides recommended for integrated production of citrus on the parasitoid T. radiata. When adult parasitoids were exposed to residues of 25 insecticides, 20% of them, i.e., gamma-cyhalothrin, etofenprox, azadirachtin, tebufenozide and pyriproxyfen, were considered as harmless (Class 1), 12% as slightly harmful (Class 2), 12% as moderately harmful (Class 3) and 56% as harmful (Class 4), according to the classification proposed by the IOBC/WPRS. Afterward, 14 insecticides (5 harmless and 9 harmful) were sprayed on the parasitoid pupae. Of the 14 insecticides tested, only the organophosphates dimethoate and chlorpyrifos affected the parasitoid emergence. The effects of insecticides on the parasitism capacity of adults exposed to residues of azadirachtin, etofenprox, gamma-cyhalothrin, pyriproxyfen and tebufenozide (harmless) were also evaluated. Tebufenozide and gamma-cyhalothrin affected the parasitism of the F0 generation, but did not affect the emergence of the F1 and F2 generations. Therefore, for an effective IPM program, selective insecticides or harmful pesticides to adult parasitoids could be used in the field, provided that the adults do not occur naturally and the chemical applications do not coincide with parasitoid releases.


Assuntos
Citrus , Hemípteros/parasitologia , Inseticidas/toxicidade , Controle Biológico de Vetores , Vespas/efeitos dos fármacos , Animais , Citrus/microbiologia , Sinergismo Farmacológico , Feminino , Fertilidade/efeitos dos fármacos , Hemípteros/microbiologia , Estágios do Ciclo de Vida , Oviposição/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pupa/efeitos dos fármacos , Rhizobiaceae , Vespas/crescimento & desenvolvimento
9.
J Invertebr Pathol ; 114(3): 230-3, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24007762

RESUMO

The objective of this study was to determine the effects of light intensity and duration (photoperiod) on the sporulation (discharge of primary conidia) and conidia germination (from non-infective primary conidia to infective capilliconidia) of Neozygites floridana isolates from Tetranychus urticae originating from Norway and Brazil. Two light intensities (40 and 208 µmolm(-2)s(-1)), three photoperiods (24 h of continuous light (24 h D), 12 h of darkness followed by 12 h of light (12 h D: 12 h L) and 24 h of continuous darkness (24 h D)) and two temperatures (18°C and 23°C) were tested. The fungus produced similar amounts of primary conidia and capilliconidia at 12 h D:12 h and 24 h D, indicating that the fungus discharges almost all of its conidia during the first 12 h of darkness. Light had less of an effect on the production of primary conidia than on capilliconidia formation. At 24 h L, capilliconidia formation was significantly lower for all tested light intensities, temperatures and isolates compared to 12 h D:12 h L and 24 h D. At both light intensities, 24 h L resulted in a significantly lower capilliconidia formation for the Norwegian isolate compared to the Brazilian isolate. Our data suggest that, even though 24 h L reduced sporulation, some capilliconidia formation may occur at the low light intensities found on the underside of strawberry leaves during parts of the day as well as the top of a non-shaded strawberry leaf during the dim evening and morning hours in the tropics and during the dim, long summer days in temperate regions.


Assuntos
Fungos/efeitos da radiação , Luz , Fotoperíodo , Animais , Brasil , Fragaria/microbiologia , Fungos/isolamento & purificação , Fungos/fisiologia , Noruega , Esporos Fúngicos/efeitos da radiação , Tetranychidae/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...